Муниципальное бюджетное общеобразовательное учреждение «Средняя школа № 104»

«Рассмотрено» Руководитель ШМО учителей физики И.В. Истана

учителей физики
И.В. <u>Колегова</u>

ФИО

Протокол № <u>1</u> от«28 авгуу 2018 г.

«Согласовано» Старший методист МБОУ Школы № 104 Е.Н. Стюгина

ФИО Clea. «За, авг. 2018 г. «Принято» Педагогическим советом МБОУ Школы № 104

Протокол № <u>1</u>
от «<u>20</u>» <u>0</u> 8 2018 ј

«Утверждаю» Директор МБОУ Школы № 104 А.Л. Гришмановской

Приказ № \$237.00 от 2018 г.

РАБОЧАЯ ПРОГРАММА

<u>Колеговой Ирины В</u>ладимировны

по физике 11 класс

предмет, класс

Пос. Подгорный ЗАТО Железногорск Красноярского края 2018 - 2019 учебный год

Пояснительная записка

Данная рабочая программа составлена в соответствии с Федеральным законом Р 29.12.2012 № 273-ФЗ « Об образовании в РФ», приказом Минобрнауки РФ от 30.08.2013 № 1015 «Об утверждении порядка организации и осуществления образовательной деятельности по основым общеобразовательным программам начального общего, основного общего и среднего общего образования», положениями о текущем контроле успеваемости и промежуточной аттестации обучающихся (в том числе экстернов) МБОУ Школы № 104, примерной основной образовательной программой образовательного учреждения Основная школа, образовательной программой МБОУ Школы № 104.

Программа составлена на основе авторской программы по физике общеобразовательных учреждений 10-11 классы В.С. Данюшенкова и О.В. Коршуновой («Программы общеобразовательных учреждений. Физика 10 -11 классы», авторы сборника: П.Г. Саенко, В.С. Шаронова, Е.П. Левитан, О.Ф. Кабардин, В.А. Орлов, Москва, Просвещение, 2010 г.- 59 с), федерального компонента государственного стандарта среднего (полного) общего образования по физике 2004 г.

Преподавание ведется по учебнику: Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин. Физика – 11, М.: Просвещение, 2009 г. Программа рассчитана на 2 часа в неделю (67+1 резерв в год).

Физика как наука о наиболее общих законах природы, выступая в качестве учебного предмета в школе, вносит существенный вклад в систему знаний об окружающем мире. Она раскрывает роль науки в экономическом и культурном развитии общества, способствует формированию современного научного мировоззрения. Для решения задач формирования основ научного мировоззрения, развития интеллектуальных способностей и познавательных интересов школьников в процессе изучения физики основное внимание следует уделять не передаче суммы готовых знаний, а знакомству с методами научного познания окружающего мира, постановке проблем, требующих от обучающихся самостоятельной деятельности по их разрешению. Подчеркнем, что ознакомление школьников с методами научного познания предполагается проводить при изучении всех разделов курса физики, а не только при изучении специального раздела «Физика и методы научного познания»

Гуманитарное значение физики как составной части общего образовании состоит в том, что она вооружает школьника *научным методом познания*, позволяющим получать объективные знания об окружающем мире.

Знание физических законов необходимо для изучения химии, биологии, физической географии, технологии, ОБЖ.

Курс физики в примерной программе среднего (полного) общего образования структурируется на основе физических теорий: механика, молекулярная физика, электродинамика, электромагнитные колебания и волны, квантовая физика.

Особенностью предмета физика в учебном плане образовательной школы является и тот факт, что овладение основными физическими понятиями и законами на базовом уровне стало необходимым практически каждому человеку в современной жизни.

Цели изучения физики:

- *освоение знаний о* фундаментальных физических законах и принципах, лежащих в основе современной физической картины мира; наиболее важных открытиях в области физики, оказавших определяющее влияние на развитие техники и технологии; методах научного познания природы;
- *овладение умениями* проводить наблюдения, планировать и выполнять эксперименты, выдвигать гипотезы и строить модели, применять полученные знания по физике для объяснения разнообразных физических явлений и свойств веществ; практического использования физических знаний; оценивать достоверность естественнонаучной информации;
- *развитие* познавательных интересов, интеллектуальных и творческих способностей в процессе приобретения знаний и умений по физике с использованием различных источников информации и современных информационных технологий;

- воспитание убежденности в возможности познания законов природы; использования достижений физики на благо развития человеческой цивилизации; необходимости сотрудничества в процессе совместного выполнения задач, уважительного отношения к мнению оппонента при обсуждении проблем естественнонаучного содержания; готовности к морально-этической оценке использования научных достижений, чувства ответственности за защиту окружающей среды;
- использование приобретенных знаний и умений для решения практических задач повседневной жизни, обеспечения безопасности собственной жизни, рационального природопользования и охраны окружающей среды.

В задачи обучения физике входят:

- развитие мышления обучающихся, формирование у них умений самостоятельно приобретать и применять знания, наблюдать и объяснять физические явления;
- овладение школьными знаниями об экспериментальных фактах, понятиях, законах, теориях, методах физической науки; о современной научной картине мира; о широких возможностях применения физических законов в технике и технологии;
- усвоение школьниками идей единства строения материи и неисчерпаемости процесса ее познания, понимание роли практики в познании физических явлений и законов;
- формирование познавательного интереса к физике и технике, развитие творческих способностей, осознанных мотивов учения; подготовка к продолжению образования и сознательному выбору профессии.

Учебная программа по физике для основной общеобразовательной школы составлена на основе обязательного минимума содержания физического образования.

Технология обучения

В курс физики 11 класса входят следующие разделы:

- 1. Магнитное поле.
- 2. Электромагнитная индукция.
- 3. Механические колебания.
- 4. Электромагнитные колебания.
- 5. Электромагнитные колебания.
- 6. Производство, передача и использование электрической энергии.
- 7. Механические волны.
- 8. Электромагнитные волны.
- 9. Световые волны.
- 10. Элементы теории относительности.
- 11. Излучение и спектры.
- 12. Световые кванты.
- 13. Атомная физика.
- 14. Физика атомного ядра. Элементарные частицы.
- 15. Значение физики для развития мира и развития производственных сил общества.
- 16. Строение и эволюция Вселенной.

В каждый раздел курса включен основной материал, глубокого и прочного усвоения которого следует добиваться, не загружая память обучающихся множеством частных фактов. Некоторые вопросы разделов обучающихся должны рассматривать самостоятельно. Некоторые материалы даются в виде лекций. В основной материал 11 класса входят: учение об электромагнитном поле, явление электромагнитной индукции, квантовые свойства света, квантовые постулаты Бора, закон взаимосвязи массы и энергии. В основной материал также входят важнейшие следствия из законов и теорий, их практическое применение

В обучении отражена роль в развитии физики и техники следующих ученых: Э.Х.Ленца, Д.Максвелла, А.С.Попова, А.Эйнштейна, А.Г.Столетова, М.Планка, Э.Резерфорда, Н.Бора, И.В.Курчатова.

На повышение эффективности усвоения основ физической науки направлено использование принципа генерализации учебного материала — такого его отбора и такой методики преподавания, при которых главное внимание уделено изучению основных фактов, понятий, законов, теорий.

Задачи физического образования решаются в процессе овладения школьниками теоретическими и прикладными знаниями при выполнении лабораторных работ и решении задач. Программа предусматривает использование Международной системы единиц (СИ), а в ряде случаев и некоторых внесистемных единиц, допускаемых к применению.

При преподавании используются:

- Классноурочная система.
- ❖ Демонстрации.
- Показ диафильмов.
- ❖ Лабораторные и практические занятия.
- Применение мультимедийного материала.

Презентации к урокам: Дифракция света, теория относительности, спектры, фотоэффект, линзы, элементы квантовой физики, интерференция света, опыт Резерфорда, Рентгеновские лучи и.т. д. Используются ЦОР: «Физика 11» издательства «Просвещение», «Открытая физика 1.1» ФИЗИКОН, «Физика 10-11 классы подготовка к ЕГЭ»-1С:школа.

• Решение экспериментальных задач.

Рабочая программа предусматривает итоговый контроль: 9 лабораторных работ (оснащенность учебным оборудованием см. Приложение №1), 5 контрольных работ (см. Приложение №2), самостоятельные работы («Физика 11. Поурочные разработки» Ю.А. Сауров, Москва «Просвещение» 2010г.), физические диктанты, согласно уставу МБОУ Школы №104. Контрольные работы взяты из: «Физика 11 класс. Поурочные планы по учебнику Г.Я. Мякишева, Б.Б. Буховцева» Автор Г.В. Маркина, издательство «Учитель» 2005г.; «Поурочные разработки по физике 11 класс» В.А. Волков, Москва «ВАКО» 2006 г., Учебнотренировочные материалы для подготовки к единому государственному экзамену.

Содержание

І. Электродинамика

Электромагнитная индукция (продолжение)

Магнитное поле. Вектор магнитной индукции. Сила Ампера. Сила Лоренца. Магнитные свойства вещества. Электромагнитная индукция. Закон электромагнитной индукции. Самоиндукция. Индуктивность. Энергия магнитного поля.

П. Колебания и волны.

Механические колебания.

Свободные колебания. Математический маятник. Гармонические колебания. Амплитуда, период, частота и фаза колебаний. Вынужденные колебания. Резонанс. Автоколебания.

Электрические колебания.

Свободные колебания в колебательном контуре. Период свободных электрических колебаний. Вынужденные колебания. Переменный электрический ток. Емкость и индуктивность в цепи переменного тока. Мощность в цеди переменного тока. Резонанс в электрической цепи.

Производство, передача и потребление электрической энергии. Генерирование электрической энергии. Трансформатор. Передача электрической энергии.

<u>Механические волны.</u> Продольные и поперечные волны. Длина волны. Скорость распространения волны. Звуковые волны. Интерференция воли. Принцип Гюйгенса. Дифракция волн.

<u>Электромагнитные волны.</u> Излучение электромагнитных волн. Свойства электромагнитных волн. Принципы радиосвязи. Телевидение.

III. Оптика

Световые лучи. Закон преломления света. Призма. Дисперсия света. Формула тонкой линзы. Получение изображения с помощью линзы. Светоэлектромагнитные волны. Скорость света и методы ее измерения, Интерференция света. Когерентность. Дифракция света. Дифракционная решетка. Поперечность световых волн. Поляризация света. Излучение и спектры. Шкала электромагнитных волн.

Основы специальной теории относительности.

Постулаты теории относительности. Принцип относительности Эйнштейна. Постоянство скорости света. Пространство и время в специальной теории относительности. Релятивистская динамика. Связь массы с энергией.

IV. Квантовая физика

Световые кванты.

Тепловое излучение. Постоянная Планка. Фотоэффект. Уравнение Эйнштейна для фотоэффекта. Фотоны.

Атомная физика.

Строение атома. Опыты Резерфорда. Квантовые постулаты Бора. Модель атома водорода Бора. Трудности теории Бора. Квантовая механика. Гипотеза де Бройля. Корпускулярное волновой дуализм. Дифракция электронов. Лазеры.

Физика атомного ядра. Элементарные частицы.

Методы регистрации элементарных частиц. Радиоактивные превращения. Закон радиоактивного распада. Протон - нейтронная модель строения атомного ядра. Энергия связи нуклонов в ядре. Деление и синтез ядер. Ядерная энергетика.

V. Значение физики для развития мира и развития производственных сил общества.

Единая физическая картина мира. Фундаментальные взаимодействия. Физика и научнотехническая революция. Физика и культура.

VI. Строение и эволюция Вселенной

Строение Солнечной системы. Система Земля - Луна. Солнце — ближайшая к нам звезда. Звёзды и источники их энергии. Современные представления о происхождении и эволюции Солнца, звёзд, галактик. Применимость законов физики для объяснения природы космических объектов. **Лабораторные работы:**

1. Наблюдение действия магнитного поля на ток.

- 2. Изучение явления электромагнитной индукции.
- 3. Определение ускорения свободного падения при помощи нитяного маятника.
- 4. Экспериментальное измерение показателя преломления стекла.
- 5. Определение оптической силы и фокусного расстояния собирающей линзы.
- 6. Измерение длины световой волны.
- 7. Наблюдение интерференции, дифракции и поляризации света.
- 8. Наблюдение сплошного и линейчатого спектров.
- 9. Изучение треков заряженных частиц по готовым фотографиям.

Поурочное планирование по физике 11 класс 2 часа в неделю

No	Тема	Д/3	Дата	
		, ,	По плану	По факту
	1. ЭЛЕКТРОДИНАМИКА - 12 ч	асов		
	Магнитное поле – 6 часов			
1/1	Инструктаж по ТБ. Магнитное поле. Вектор магнитной индукции.	ξ1, 2		
2/2	Модуль магнитной индукции. Сила Ампера.	ξ 3, 4, 5 ynp.1 (1,2)		
3/3	Лабораторная работа №1 (Наблюдение действия магнитного поля на ток).	ξ3-5		
4/4	Сила Лоренца.	ξ6 упр.1 (4)		
5/5	Магнитные свойства вещества.	ξ7 упр. 2(1)		
6/6	Решение задач. Самостоятельная работа.			
	Электромагнитная индукция – 6	часа		
7/1	Электромагнитная индукция. Магнитный поток. Правило Ленца.	ξ8-10		
8/2	Лабораторная работа №2 (Изучение явления электромагнитной индукции)			
9/3	Закон электромагнитной индукции. Вихревое электрическое поле. ЭДС индукции в движущихся проводниках.	ξ11, 12 13,упр.2 (5,6)		
10/4	Самоиндукция. Индуктивность. Энергия магнитного поля.	ξ15 ξ16yπp.2 (9)		
11/5	Решение задач.	Итоги гл.1 и 2		
12/6	Контрольная работа №1.			
	2. КОЛЕБАНИЯ И ВОЛНЫ-1	.3		
	Механические колебания1 час	сов		
13/1	Лабораторная работа № 3 (Определение ускорения свободного падения при помощи нитяного маятника)			
	Электромагнитные колебания 5 часов			
14/1	Аналогия между механическими и электромагнитными колебаниями.	ξ29 упр. 4 (1)ξ27, 28		
15/2	Уравнение, описывающее процессы в колебательном контуре.	ξ30 упр. 4 (2)		
16/3	Переменный электрический ток. Активное сопротивление.	ξ31, 32 упр. 4 (4)		
17/4	Конденсатор в цепи переменного тока. Катушка индуктивности в цепи переменного тока.	ξ33,34 упр. 4 (6)		
18/5	Автоколебания.	ξ36 упр. 4		
	Производство, передача и использование элект		ергии-3	<u> </u>
19/1	Генерирование электрической энергии.	ξ37, 38	•	
	Трансформаторы.	упр.5		
20/2	Производство и использование электрической энергии. Решение задач	ξ39-41 упр. 5		
21/3	Контрольная работа №2.			
-	Механические волны -1			
22/1	Волновые явления. Уравнение бегущей волны. Волны в среде.	ξ42-47		
	Электромагнитные волны- 3	3		

23/1	Электромагнитная волна и её обнаружение.	ξ48-49		
24/2	1			
	Изобретение радио А.С.Поповым.			
25/3	Принципы радиосвязи.	ξ52, 53		
	3.ОПТИКА-16			
	Световые волны -10			
26/1	Скорость света. Закон отражения света.	ξ59, 60 yπp 8 (4)		
27/2				
28/3	Лабораторная работа №4 (Экспериментальное измерение показателя преломления стекла)	ξ62		
29/4	Линза. Построение изображения в линзе.	ξ63, 64		
30/5	Формула тонкой линзы. Решение задач.	ξ65, 66		
31/6	Лабораторная работа №5 «Экспериментальное определение оптической силы и фокусного расстояния собирающей линзы»	65, 66		
32/7	Интерференция механических и световых волн. Дифракция волн.	ξ65, 66		
33/8	Лабораторная работа №6 (Измерение длины световой волны)	ξ67-69		
34/9	Лабораторная работа №7 «Наблюдение интерференции, дифракции и поляризации света».	ξ67-69		
35/10	Контрольная работа №3			
	Элементы теории относительнос			
36/1	Законы электродинамики и принцип относительности.	ξ75, 76		
37/2	Относительность одновременности.	ξ77, 78		
38/3	Зависимость массы от скорости. Релятивистская динамика.	ξ79,		
	Излучение и спектры-3			
39/1	Виды излучений. Спектры.	ξ80, 81,		
40/2	Виды спектров. Лабораторная работа №8 «Наблюдение сплошного и линейчатого спектров».	ξ82,83		
41/3	Инфракрасное, ультрафиолетовое и рентгеновское излучения. Решение задач.	ξ84, 85, 86		
	4. КВАНТОВАЯ ФИЗИКА – 1	5	<u> </u>	
	Световые кванты-3			
42/1	Квантовая физика. Фотоэффект.	ξ87,88		
43/2	Фотоны. Применение фотоэффекта.	ξ89, 90, yπp. 12(5)		
44/3	Давление света. Химическое действие света.	ξ91,92		
	Атомная физика-3	·		
45/1	Строение атома. Опыты Резерфорда.	ξ93		
46/2	Модель атома по Бору.	ξ94, 95упр 13 (1)		
47/3	Лазеры.	ξ97упр 13(3)		
	Физика атомного ядра. Элементарные			
48/1	Методы регистрации элементарных частиц.	ξ96		
49/2	Лабораторная работа №9«Изучение треков заряженных частиц по готовым фотографиям».	ξ96		
50/3	Открытие радиоактивности. Радиоактивные превращения.	ξ97-103		
51/4	Строение атомного ядра. Энергия связи.	ξ, 104, 105		
52/5	Ядерные реакции. Деление ядер урана.	ξ106, 107		
		упр. 14 (6)		_

536	Цепные ядерные реакции. Ядерный реактор.	ξ108, 109 упр. 14 (5)	
54/7	Биологическое действие радиоактивных излучений.	ξ113	
55/8	Контрольная работа №4		
56/9	Обобщение.		

5. ЗНАЧЕНИЕ ФИЗИКИ ДЛЯ РАЗВИТИЯ МИРА И РАЗВИТИЯ ПРОИЗВОДСТВЕННЫХ СИЛ ОБЩЕСТВА-1 час

57/1	Единая физическая картина мира.	ξ127					
	6. СТРОЕНИЕ И ЭВОЛЮЦИЯ ВСЕЛЕННОЙ-10 часов						
58/1	Небесная сфера. Звездное небо. §116						
59/2	Законы Кеплера.	ξ117					
60/3	Строение Солнечной системы.	ξ119					
61/4	Система Земля — Луна.	ξ118					
62/5	Общие сведения о Солнце, его источники энергии и	ξ120, 121					
	внутреннее строение. Физическая природа звезд.						
63/6	Наша Галактика. Промежуточная аттестация.	ξ-123					
64/7	Происхождение и эволюция галактик. Красное	ξ124					
	смещение. Жизнь и разум во Вселенной.						
65/8	Решение задач.	ξ125					
66 /9	Решение задач.						
67/10	Итоговая контрольная работа №5						
68/1	Резерв.						

Требования к уровню подготовки обучающихся

Обучающиеся должны знать:

Электродинамика

Понятия: электромагнитная индукция, самоиндукция, индуктивность, свободные и вынужденные колебания, колебательный контур, переменный ток, резонанс, электромагнитная волна, интерференция, дифракция и дисперсия света. Различные виды электромагнитных излучений и их практические применения.

Законы и принципы: закон электромагнитной индукции, правило Ленца, законы отражения и преломления света, связь массы и энергии.

Законы распространения света. Оптические приборы.

Практическое применение: генератор, схема радиотелефонной связи, полное отражение. **Обучающиеся должны уметь**:

- Измерять силу тока и напряжение в цепях переменного тока.
- Использовать трансформатор.
- Измерять длину световой волны.

Демонстрации

Электроизмерительные приборы.

Магнитное взаимодействие токов.

Отклонение электронного пучка магнитным полем.

Зависимость ЭДС индукции от скорости изменения магнитного потока.

Свободные электромагнитные колебания.

Осциллограмма переменного тока.

Генератор переменного тока.

Получение спектра с помощью призмы.

Поляризация света.

Прямолинейное распространение, отражение и преломление света.

Оптические приборы.

Квантовая физика

Понятия: фотон, фотоэффект, корпускулярно — волновой дуализм, ядерная модель атома, ядерная реакция, энергия связи, радиоактивный распад, цепная реакция, термоядерная реакция, элементарные частицы.

Законы и принципы: законы фотоэффекта, постулаты Бора, закон радиоактивного распада.

Практическое применение: устройство и принцип действия фотоэлемента, принцип спектрального анализа, принцип работы ядерного реактора.

Обучающиеся должны уметь: решать задачи на применение формул, связывающих энергию и импульс фотона с частотой световой волны, вычислять красную границу фотоэффекта, определять продукты ядерной реакции.

ТРЕБОВАНИЯ К УРОВНЮ ПОДГОТОВКИ ВЫПУСКНИКОВ

В результате изучения физики на базовом уровне обучающийся должен знать/понимать

- смысл понятий: физическое явление, гипотеза, закон, теория, вещество, взаимодействие, электромагнитное поле, волна, фотон, атом, атомное ядро, ионизирующие излучения, планета, звезда, галактика, Вселенная;
- смысл физических величин: скорость, ускорение, масса, сила, импульс, работа, механическая энергия, внутренняя энергия, абсолютная температура, средняя кинетическая энергия частиц вещества, количество теплоты, элементарный электрический заряд;
- *смысл физических законов* классической механики, всемирного тяготения, сохранения энергии, импульса и электрического заряда, термодинамики, электромагнитной индукции, фотоэффекта;
- *вклад российских и зарубежных ученых*, оказавших наибольшее влияние на развитие физики;

уметь

- *описывать и объяснять физические явления и свойства тел:* движение небесных тел и искусственных спутников Земли; свойства газов, жидкостей и твердых тел; электромагнитную индукцию, распространение электромагнитных волн; волновые свойства света; излучение и поглощение света атомом; фотоэффект;
- *отпичать* гипотезы от научных теорий; *делать выводы* на основе экспериментальных данных; *приводить примеры*, *показывающие*, *что*: наблюдения и эксперимент являются основой для выдвижения гипотез и теорий, позволяют проверить истинность теоретических выводов; физическая теория дает возможность объяснять известные явления природы и научные факты, предсказывать еще неизвестные явления;
- *приводить примеры практического использования физических знаний:* законов механики, термодинамики и электродинамики в энергетике; различных видов электромагнитных излучений для развития радио и телекоммуникаций, квантовой физики в создании ядерной энергетики, лазеров;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, Интернете, научно-популярных статьях; использовать приобретенные знания и умения в практической деятельности и
 - повседневной жизни для:
- обеспечения безопасности жизнедеятельности в процессе использования транспортных средств, бытовых электроприборов, средств радио- и телекоммуникационной связи.;
- оценки влияния на организм человека и другие организмы загрязнения окружающей среды;
- рационального природопользования и защиты окружающей среды.

ИСПОЛЬЗУЕМАЯ ЛИТЕРАТУРА:

Б. Б. Буховцев В.М. Чаругин "Физика. 11класс" – 10 издание, Г. Я. Мякишев Москва: изд-во "Просвещение" – 2009 г. «Физика 11. Поурочные разработки», Москва «Просвещение» -2010г. Ю.А. Сауров А. В. Авдеева "Тематическое и поурочное планирование по физике" Москва: изд-во "Дрофа" -2004 г. «Физика 11 класс. Поурочные планы по учебнику Г.Я. Мякишева, Г.В. Маркина Б.Б. Буховцева», издательство «Учитель» 2005г. В.Ф. Шилов «Физика. Поурочное планирование 10-11 классы» - Просвещение, 2007г. А. П. Рымкевич "Сборник задач по физике" Москва: изд-во "Дрофа" -2000 г. Н. В. Ильина "Тематический контроль по физике" Москва: изд-во "Интеллект-Центр" – 2002 г. "Тесты по физике. 7 – 11 классы" А. А. Фадеева Москва: изд-во "АСТ" – $2002 \, \Gamma$. "Сборник тестовых заданий для тематического Р. В. Коноплич и итогового контроля" Москва: изд-во "Интеллект-Центр" – 2001 г.

"Физика. Тесты" О. Ф. Кабардин

Москва: изд-во "Дрофа" -2001 г.

В.А. Волков «Поурочные разработки по физике 10 класс» Москва «ВАКО»-

2006 г.

Лист регистрации изменений к рабочей программе

авторская программа по физике общеобразовательных учреждений 10-11 классы В.С. Данюшенкова и О.В. Коршуновой («Программы общеобразовательных учреждений. Физика 10 -11 классы», авторы сборника: П.Г. Саенко, В.С. Шаронова, Е.П. Левитан, О.Ф. Кабардин, В.А. Орлов, Москва, Просвещение, 2010 г.- 59 с)

	(название программы)	
учитель	Колегова И.В.	
	(Ф. И. О. учителя)	

11 «A»

№ π/π	Дата изменения	Причина изменения	Суть изменения	Корректирующие действия
1				
2				
3				
4				
5				
6				
7				
8				

	Отчет о выпо	олнении реал	тизуемой учеб і	ной программы	
	по	_Физике	(указать п	редмет)	
Учитель	И.В. Колег	ова			
Предмет	Физика				
Класс	11			_	
Количество ч	асов: в неделю -	2_ часа; в г	од – 68 часов		
Программа	авторская прог	грамма по фи	зике общеобра	зовательных учрежд	цений 10-11
классы В.С. Дані	ошенкова и О.Е	Коршуново	й («Программь	и общеобразователь:	<u>ных</u>
учреждений. Физ	вика 10 -11 клас <mark>с</mark>	сы», авторы с	борника: П.Г. С	Саенко, В.С. Шароно	<u>ова, Е.П.</u>
Левитан, О.Ф. Ка	абардин, В.А. Ор	олов, Москва,	Просвещение,	2010 г 59 c)_	
Учебник Ф	изика 11 класс а	вторы Г.Я. N	Лякишев, Б.Б. Б	Буховцев, В.М. Чару	ТИН

Учебник <u>Физика 11 класс авторы Г.Я. Мякишев, Б.Б. Буховцев, В.М. Чаругин</u> 11 «А»

	По рабочей програм ме	С учетом корректир овки	Дано часов			
Темы			I полугодие	II полугодие	Год	
1. Электродинамика	12					
2. Колебания и волны	13					
3.Оптика	16					
4. Квантовая физика	15					
5. Значение физики для развития мира и развития производственных сил общества	1					
6. Строение и эволюция Вселенной	10					
Резерв	1					
Итого	68					